Journal of Organometallic Chemistry, 408 (1991) 61–75 Elsevier Sequoia S.A., Lausanne JOM 21524

Metallorganische Verbindungen des Technetiums

VI *. Darstellung und Charakterisierung von Verbindungen des Typs $LTc(CO)_3$ (L = C₅Me₅, C₅Me₄Et, C₉H₇); Röntgenstrukturanalysen von (η^5 -C₅Me₅)M(CO)₃ (M = Tc, Re), (η^5 -C₅Me₄Et)Tc(CO)₃ sowie (η^5 -C₉H₇)Tc(CO)₃

Konstantinos Raptis, Ernst Dornberger, Basil Kanellakopulos *

Kernforschungszentrum Karlsruhe, Institut für Heiße Chemie, Postfach 3640, W-7500 Karlsruhe (Deutschland)

Bernhard Nuber and Manfred L. Ziegler *

Anorganisch-Chemisches Institut der Universität Heidelberg, Im Neuenheimer Feld 270, W-6900 Heidelberg (Deutschland)

(Eingegangen den 19. Oktober 1990)

Abstract

The compounds $LTc(CO)_3$ ($L = C_5Me_5$, C_5Me_4Et , Ind) were synthesized for the first time and their structures as well as the well-known (C_5Me_5)Re(CO)₃ were determined by single-crystal X-ray diffraction. The IR, ¹H NMR, ¹³C NMR and the UV spectra are reported and discussed.

Zusammenfassung

Die Verbindungen LTc(CO)₃ (L = C_5Me_5 , C_5Me_4Et , Ind) wurden erstmals hergestellt und ihre Strukturen ebenso wie die des bekannten (C_5Me_5)Re(CO)₃ durch Röntgenstrukturanalysen an Einkristallen ermittelt. Die IR-, ¹H-NMR-, ¹³C-NMR- und die UV-Spektren werden mitgeteilt bzw. diskutiert.

Einleitung

Zahlreiche Verbindungen des Typs $LM(CO)_3$ ($L = \eta^5$ -gebundener C_5H_5 -Ring und seine Derivate; M = Mn, Re) sind schon seit geraumer Zeit bekannt [1,2]; ihre Chemie, vor allem die der Manganspezies, wurde intensive untersucht. Die ersten und bisher einzigen Technetiumverbindungen dieser Art, das (C_5H_5)Tc(CO)₃ (1) und das ($C_5H_4C(O)Ph$)Tc(CO)₃, wurden 1962 bzw. 1963 von Palm, Fischer und

^{*} Teil V siehe Lit. 21.

Baumgärtner [3] bzw. von Fischer und Fellmann [4] synthetisiert. Röntgenstrukturanalysen von $(C_5H_5)Mn(CO)_3$ (1b) [5] und seinem Rheniumhomologen, $(C_5H_5)Re(CO)_3$ (1a) [6], liegen vor, night jedoch von den alkylsubstituierten Derivaten $(C_5H_4R)M(CO)_3$ (R = Me, Et), $(C_5Me_5)M(CO)_3$ bzw. $(C_5Me_4Et)M(CO)_3$ (M = Mn, Re). Von beiden oben erwähnten Technetiumverbindungen fehlen ebenfalls Röntgenstrukturanalysen.

Dies war mit ein Grund, die Verbindungen $(C_5Me_5)Tc(CO)_3$ (2), $(C_5Me_4Et)Tc(CO)_3$ (3) und $(Ind)Tc(CO)_3$ (4) erstmals zu synthetisieren und ihre Strukturen sowie die der Rheniumverbindung $(C_5Me_5)Re(CO)_3$ (3a) mittels Röntgenstrukturanalyse zu ermitteln.

Diskussion

Die Technetium-Verbindungen 2, 3 und 4 wurden nach bekannten Methoden erstmals hergestellt [7] und ihre Strukturen ebenso wie die der Rheniumverbindung 2a mittels Röntgenstrukturanalyse ermittelt. Die Ergebnisse der Strukturbestimmungen sind in den Tabellen 1 und 2 bzw. 4–8 festgehalten; Moleküldarstellungen finden sich in den Figuren 1–4.

Die sogenannte "Pianostuhl-Struktur" ist das allen Verbindungen gemeinsame Bauprinzip, wobei die Tc-Zentren jeweils von einem η^5 -gebundenen Fünfring und drei CO-Gruppen koordiniert werden. Tabelle 2a, in der – mit Ausnahme einiger Einzeldaten für die Indenylverbindung 4 – die wichtigsten gemittelten Bindungsabstände und -winkel der Verbindungen 2–4 sowie der Rheniumverbindungen (C₅H₅)Re(CO)₃ (1a) zusammengestellt sind, erlaubt einen Vergleich der Bindungsparameter dieser Spezies. Es wird deutlich, daß alle vergleichbaren Parameter zumindest innerhalb 3 σ übereinstimmen. Tabellen 2a und 2b zeigen auch, daß sich die Kovalenzradien von Technetium und Rhenium kaum unterscheiden; innerhalb 3σ sind die Unterschiede nicht signifikant. Alle Bindungslängen und -winkel liegen im Erwartungsbereich. Dahl und Wei [9] haben erstmals 1963 auf eine lokalisierte Metall-C₅H₅ Bindung in $(\eta^5$ -C₅H₅)Ni(C₇H₅(CO₂CH₃)₂) (5) hingewiesen. Dieses Problem war in den letzten beiden Jahrzehnten Gegenstand mehrerer Publikationen [5b,10]. Für die Abweichung der Cp-Ringe von der D_{sh} -Symmetrie in LM(CO)₃ (M = Mn (1b), Re (1a)) Verbindungen werden hauptsächlich elektronische Gründe verantwortlich gemacht [5b], wobei für 1a und 1b - in Übereinstimmung mit Rechnungen von Bischof [11] - die Dienyl-Anordnung beobachtet wurde [6.10]. Demgegenüber konnten Byers und Dahl [12] bei $(\eta^5 - C_5(CH_3)_5)Co(CO)_2$ (6) eine Allyl- en Anordnung des C. Me Ringes fesstellen, wie sie auch bei n^5 -gebundenen Indenvlkomplexen vorliegt [10,13,14]. Diskutiert werden die Abweichungen hauptsächlich auf der Basis der schwingungskorrigierten Bindungslängen [8.15]. Auch für die Tc-spezies 2, 3 und 4 wurden die schwingungskorrigierten Bindungsabstände (Tab. 2b) ermittelt. Es wurde das "rigid-body" Modell sowohl für die ganzen Moleküle als auch für die LTc- bzw. Tc(CO)₃-Fragmente angewandt [15]. Ebenso wie für die Verbindungen la und lb [5b] wurde gute Übereinstimmung $(R_{mil}; 0.074 (2), 0.054 (3), 0.048 (4))$ erreicht, wenn nur die LTc-Fragmente als starr angenommen wurden. Sofern im Rahmen der Genauigkeit der Strukturbestimmungen der Spezies 2 und 3 überhaupt eine Aussage möglich ist, dann liegen bei diesen Verbindungen die n^5 -gebundenen Fünfringe eher in der Allvl-en Anordnung vor. Was die Bindung des Indenylrings and das Technetium in Verbindung 4 betrifft, so findet man das bekannte Muster (Fig. 4). Die $Tc-C_{5-Ring}$ Abstände betragen 227.6(5) (Tc-C(5)), 227.9(5) (Tc-C(6)), 228.0(4) (Tc-C(7)), 235.0(4) (Tc-C(8)) und 235.6(5)pm (Tc-C(4)) und auch die schwingungskorrigierten Parameter (Tab. 2a) lassen das für Indenvlsysteme beobachtete Schema von zwei längeren und drei

Fig. 1. Moleküldarstellung von $(\eta^5-C_5Me_5)Re(CO)_3$ (2a); die thermischen Ellipsoide entsprechen einer Wahrscheinlichkeit von 50%.

	24	2	3	4
Kristallsystem	triklin	triklin	monoklin	triklin
Raumgruppe	$P\overline{I}(Nr.2)$	Pī(Nr.2)	$C_{2h}^{2}-P2_{1}/m(Nr,11)$	$P\overline{I}(Nr.2)$
Farbe	farblos	gelblich	farblos	farblos-gelblich
Gitterkonstanten	699.5(6), 783.4(6)	698.0(1), 785.4(2)	705.0(6), 1130.0(11)	673.7(5), 731.7(6)
(рш, °)	1292.6(9);	1293.6(4);	935.8(8);	1228.1(9);
	84.97(6), 87.18(6)	85.46(2), 87.57(2)	94.86(7)	97.52(6), 94.68(6)
	75.00(6)	75.32(2)		109.38(6)
Summenformel	C ₁₃ H ₁₅ O ₃ Re	C ₁₃ H ₁ , O ₃ Te	C ₁₄ H ₁ ,O ₄ Te	C ₁₇ H ₇ O ₃ Te
Molekulargewicht (g mol ⁻¹)	810.92	634.52	664.37	596.18
Z, V (Å ³), F (000)	2, 681.30, 384	2, 683.68, 320	2, 742.82, 336	2, 561.09, 292
$d_{\rm rb}$ (g cm ⁻³), μ (cm ⁻¹)	1.98, 90.3	1.54, 10.21	1.48, 9.4	1.76, 12.4
Kristallabmessungen (mm ³)	$0.10 \times 0.15 \times 0.20$	$0.23 \times 0.53 \times 0.95$	$0.85 \times 0.34 \times 0.68$	$0.23 \times 0.51 \times 0.61$
Mo-K _a -Strahlung (pm)	71.073	71.073	71.073	71.073
Meßbereich: θ	$3 < 2.0 < 70^{\circ}$	$3 < 2\theta < 60^\circ$	$3 < 2\theta < 60^{\circ}$	$3 < 2\theta < 57.5^{\circ}$
h, k, l	0/11, -13/13, -21/21	0/10, -11/11, -18/18	0/10, 0/16, -14/14	0/10, -10/10, -17/17
Scan	6/B	0/0	θ/Ω	8/0
Mögl. Refl. vermess. Bereich	5504	4279	2434	2908
unabhängige verm. Reflexe	$4920(I > 2.5\sigma(I))$	$242l(I > 2.0 \sigma(I))$	1533(I > 2.5a(I))	$2532(I > 2.5\sigma(I))$

Tabelle 1

Kristallographische Daten der Spezies 2-4

R merge Absorptionskorrektur(ψ- scans, Z. d. Refl., θ-Bereich Transmissionsfak. (min. max) Isotrope Extinktionskorr.	7 Reflexe 11.5 < 2θ < 51° 0.55∕1.00	0.028 7 Reflexe 12.7 < 28 < 48.4° 0.70/1.00 Isotrope Extinktionskorrekt (X = isotr	0.029 7 Reflexe 6.0 < 2θ < 42.0° 0.73/0.77 0.73/0.77 tur, $F^* = F_c/(1.00 + 0.002 \cdot X \cdot F_c^2)$ oper Extinktionsparameter)	7 Reflexe 6.0 < 2 <i>θ</i> < 51.0° 0.74/1.00 'sin 2 <i>θ</i>) ^{0.25}
Gerät (Graphitmonochromator Microvax 11)	AEDII, Siemens- Stoe-Diffraktom.	AEDII, Siemeus- Stoe-Diffraktom. Mathode dar kleinsten Ou	AEDII, Siemens-Stoe- Diffraktometer advate $(\Sigma w(F_1 - F_1)^2 \text{ mit } w =$	Syntex R 3 $1/\sigma^2(F_0)$
Verfeinerung der Nicht-Wasserstoffatome Wasserstoffatome	anisotrop	anisotrop Auf idealen Positionen fes HI	anisotrop anisotrop (C-H 96pm) aber nicht v TX in sheLXTL-PLUS)	anisotrop verfeinert,
shift/esd (mean/max) Restelektronendichte	0.07/-0.54 2.3/-1.64	0.04/0.33 0.88/-1.16	0.01(max) 0.61/-0.38	0.003(max) 0.56/-0.43
$(\max/\min) (\epsilon/\hat{A}^3)$ R, $R_{w_s} = [\Sigma_w(F_o - F_c)^2/$	0.043, 0.041	0.047, 0.035	0.044, 0.039	0.030, 0.030
$(\Sigma w F_o^{\perp}) ^{1/2}$ Goof = $[\Sigma W(F_o - F_c)^2/$	4.29	3.09	1.91	3.08
(<i>NO – NY</i>)] (<i>NO</i> , <i>NV</i>) Strukturermittlung	4920, 170	2421, 169 Patterson-, Fourier-, D	1533, 92 ifferenzfourier-Synthesen, SHELXTI	2491, 146 Plus [8]

	uige pulluungslängel.	i (pin) und bindungsv	VINKEI (-) VON 13 [0], 23 -	, z _, 3 _ mu 4 _				
	M-C _{Carb.}	M-C _{Ring}	C Ring - C Ring	C _{Ring} -C _{Me}	C _{Ring} – C _{Et}	M-Ring- schwerpunkt	C-0	C _{Et} -C _{Et}
la	189.4(7)	228.4(9)	138.3(17)			195.7(9)	116.0(9)	
5	189.0(8)	230.8(8)	141.4(11)	151.0(12)		197.0(9)	116.3(11)	
7	190.7(6)	229.2(6)	142.8(9)	149.7(8)		194.4(6)	114.0(7)	
e	190.3(6)	229.1(4)	142.5(6)	151.0(6)	150.1(8)	194.2(5)	115.3(7)	152.5(10)
4	190.0(4)	Tc-C(4) 235.6(5)	C(4)-C(5) 145.2(6)			196.2(5)	114.6(6)	
		Tc-C(5) 227.6(6)	C(5)-C(6) 142.0(8)					
		Tc-C(6) 227.9(5)	C(6)-C(7) 139.5(7)					
		Tc-C(7) 228.0(4)	C(7)-C(8) 145.2(7)					
		Tc-C(8) 235.0(4)	C(8)-C(4) 143.3(5)					
			C(4)-C(12) 142.1(7)					
			C(12)-C(11) 133.8(7)					
			C(11)-C(10) 139.6(7)					
			C(10)-C(9) 134.2(7)					
			C(9)-C(8) 141.8(6)					
	CcarbTc-Ccarb.	Tc-C-O	C _{Me} -C _{Ring} -C _{Ring}	CRing-CRing-CRi	20			C _{Et} -C _{Ring} -C _{Ring}
la	90.0(3)	177.7(8)		108.0(10)				
7 3	91.4(4)	177.9(8)	125.9(7)	108.0(6)				
7	91.0(3)	177.4(5)	125.9(6)	108.0(5)				
e	91.2(2)	176.6(5)	125.8(4)	107.9(4)				126.0(2)
4	90.9(2)	177.8(4)		C(4)-C(5)-C(6)	107.8(4)	C(4)-C(12)-C(11)	118.3(4)	
				C(5)-C(6)-C(7)	109.3(5)	C(12)-C(11)-C(10)	122.5(4)	
				C(6)-C(7)-C(8)	108.2(4)	C(11)-C(10)-C(9)	121.7(4)	
				C(7)-C(8)-C(4)	107.5(4)	C(10)-C(9)-C(8)	119.0(4)	
				C(8)-C(4)-C(5)	107.1(4)	C(9)-C(8)-C(4)	118.9(4)	
				C(5)-C(4)-C(12)	133.4(4)	C(8)-C(4)-C(12)	119.5(4)	
[°] Di	ese Arbeit.							

Tabelle 2a Wichtige Bindungslängen (pm) und Bindungswinkel (°) von 1a [6], $2a^a$, 2^a , 3^a und 4^a

66

							•		0121
Tc-C(4)	230.9	Tc-C(1)	192.1	C(1) - O(1)	115.3	C(4) - C(5)	145.0	C(4)-C(9)	6.1CI
$T_{c-C(5)}$	230.5	$T_{c-C(2)}$	190.7	C(2) - O(2)	115.3	C(4)-C(8)	145.3	C(5)-C(10)	152.7
Te-C(6)	231.5	Te-C(3)	194.0	C(3)-O(3)	114.2	C(5)-C(6)	144.6	C(6)-C(11)	151.5
Te-C(7)	229.7	~				C(6) - C(7)	144.2	C(7)-C(12)	150.0
Tc-C(8)	230.1					C(7)-C(8)	142.0	C(8)-C(13)	150.0
Te-C(3)	230.3	Te-C(1)	191.1	C(1)-O(1)	115.6	C(3)-C(4)	144.2	C(4)-C(6)	151.6
Te-C(4)	230.1	Te-C(2)	191.2	C(2)-O(2)	116.0	C(4) - C(5)	143.3	C(5)-C(7)	151.8
Te-C(5)	229.7					C(5)-C(5a)	142.1	C(3)-C(8)	150.9
Ì								C(8)-C(9)	153.1
Tc-C(4)	236.5	Te-C(1)	192.2	C(1)-O(1)	115.8	C(4)-C(5)	146.1	C(8)-C(9)	142.7
$T_{e-C(5)}$	228.8	$T_{c-C(2)}$	189.9	C(2)-0(2)	114.8	C(5)-C(6)	143.1	C(9)-C(10)	135.2
Te-C(6)	229.2	Tc-C(3)	191.7	C(3)-O(3)	115.5	C(6)-C(7)	140.5	C(10)-C(11)	140.7
$T_{c-C(7)}$	229.3	~				C(4)-C(8)	144.4	C(4)-C(12)	143.2
Tc-C(8)	235.9					C(7)-C(8)	146.2	C(11)-C(12)	134.6

Schwingungskorrigierte Bindungslängen (pm) der Spezies 2-4

Tabelle 2b

Fig. 2. Moleküldarstellung von $(\eta^5 - C_5 Me_5)Tc(CO)_3$ (2); die thermischen Ellipsoide entsprechen einer Wahrscheinlichkeit von 50%.

nahezu gleichen Metall- C_{5-Ring} Abständen erkennen [10,14,16]. Auch bei 4 besteht die Verzerrung darin, daß das Tc-Zentrum parallel zur Ringebene in Richtung C(6) aus dem Mittelpunkt des 5-Rings verschoben wurde. Dieses Phänomen wurde von

Fig. 3. Moleküldarstellung von $(\eta^5-C_5Me_4Et)Tc(CO)_3$ (3); die thermischen Ellipsoide entsprechen einer Wahrscheinlichkeit von 50%.

Fig. 4. Moleküldarstellung von $(\eta^5 - C_9 H_7)Tc(CO)_3$ (4); die thermischen Ellipsoide entsprechen einer Wahrscheinlichkeit von 50%.

mehreren Autoren an verschiedenen Beispielen untersucht [13,17]. Die Projektion des Tc-Atoms auf die Ebene des Fünfrings ist 8.4 pm vom Ringschwerpunkt entfernt und der dazu gehörende "angle slip" beträgt 2.5° (« zwischen der Geraden Tc-Mittelpunkt und der Senkrechten von Tc auf den 5-Ring) [10,14]. Beim (C_oH₆Br)Mn(CO)₃ (7) betragen diese Parameter 2.8° und 8.8 pm [14]. Die C-C-Abstände im Indenylsystem (Tab. 2, 2a) folgen der Allyl-en-Anordnung im Fünfring, während sich für den Sechsringteil die erwartete "Dienstruktur" mit zwei kürzeren und drei längeren C-C-Bindungen deutlich abzeichnet [18,19]. Der Winkel Ω zwischen der "Allylebene" (C(5), C(6), C(7)) und dem C₄-Fragment des Fünfrings (C(4), C(8), C(5), C(7)) beträgt 3.7°, der Winkel zwischen der Ebene des Fünfrings und der Ebene des Sechsrings 2.4°. Legt man in 4 eine Ebene durch die Atome Tc, C(2), C(6) und den Mittelpunkt der C(10)-C(11) Bindung (Ebene A), so stellt man fest, daß diese Ebene in etwa die Molekülebene darstellt. Auch 2 besitzt angenähert σ_{0} -Symmetrie; in der besten Ebene B liegen die Atome Tc, C(3), C(8) und der Mittelpunkt zwischen C(5) und C(6) (Fig. 2). So beträgt der Winkel zwischen den Ebenen B und C (C(4)-C(8) 92.4°. Eine kristallographisch bedingte Spiegelebene liegt dagegen in 3 vor (Fig. 3), auf ihr befinden sich die Atome Tc, C(2), O(2), C(3), C(8) und C(9) sowie der Mittelpunkt der Bindung C(5)-C(5a). Die beiden Ringhälften C(3), C(4), C(5), X (= Mittelpunkt C(5)-C(5a)) und C(3), C(4a), C(5), X sind jedoch nicht gegeneinander gefaltet, der Winkel zwischen diesen Ebenen errechnet sich zu 0.2°, er ist nicht signifikant.

Bei 2 sind die Methyl- bzw. bei 3 die Methylliganden und der Ethylrest geringfügig aber signifikant von den Technetium-Zentren weggeneigt. Die IR-Spektren in KBr der Verbindungen 2-4 sind in Tab. 3 mit denen der Re-Spezies 2a-4a aufgelistet, sie sind charakteristisch für Verbindungen des Typs $LM(CO)_3$ [20]. In Lösung treten zwei Banden (A₁, E) im ν (CO)-Bereich auf, wobei die intensivere längerwellige der Rasse E breit und mit Ausnahme der Verbindungen 3 und 3a im KBr-Spektrum

Analytische und	l spektroskopische Da	tten der Spezies 2-4 a				
Verbindung	Tc-Anal.	IR-Spektren	NMR-Spektren		UV-Spektren	-
	((ac) (per.) (%))	(v(cU)(cm ⁻¹), KB-1	(o-Werte, I.M.S, Benzo	1-d ₆)	$(\lambda_{\text{max}} \text{ (nm)}, \epsilon(1))$	$mol^{-1} cm^{-1})$
			'H-NMR	¹¹ C-NMR	n-Hexan	CH ₃ CN
C ₁₃ H ₁₅ O ₃ Re (2a)		2000 s 1908 br,ss	1.71(s,CH ₃)	10.30(CH ₃) 98.33(C _{King}) 198.48(CO)	285(2683)	285(2692)
C ₁₃ H ₁₅ O ₃ Tc (2)	(31.34) 31.10	2004 s 1918 1917 br.ss	1.62(s,CH ₃)	10.45(CH ₃) 99.92(C _{Ring}) - (CORing)	265(2985)	277(2785)
C ₁₄ H ₁₇ O ₃ Tc				10.55, 10.77(CH,)		
(£)	(30.08)	2012 s	2.39(q,2H)	18.92, 16.36(CH ₂ CH ₃)	286(2080)	286(2172)
	29.79	1922 br,ss	1.05(t,3H) 2.03(s,12H) 2.07	99.85(C _{Rung}) - CO	238 sh 225 sh	
C ₁₄ H ₁₇ O ₃ Re		2004 s	2.43(q,2H)	10.67,10.43(CH,)		
(3a)		1912 br.ss	1.06(t,3H)	18.88, 16.59(Ch ₂ CH ₃)	260(2331)	275(2500)
			2.16(s,12H)	103.73, 98.59, 98.34(C _{Ring})	233 sh	
C.,H.O.Tc ^b				198.04(UU) 73.08(C(1).C(3)).03.26(C(2))	222 Sh 273(7853)	AAFECYCCE OCE
		- 2020			(6007)070	(0C/7)77C-07C
Ì	(32.56) 33.22	2020 S 1943 br,ss 1928 br,ss	0.93(m,2H,0-King) 6.60(m,2H,6-Ring) 4.89(m,2H,5-Ring)	109.6/(C(8), C(9)) 123.65(C(5), C(6)) 125.47(C(4), C(7)) - (CO)	270(5831) sh	270(5687) sh
			4.80(m,1H,5-Ring)			
C ₁₂ H,O3Re ⁵			6.86(m,2H,6-Ring)	70.82(C(1), C(3)), 90.87(C(2))		
(4a)		2016 s	6.52(m,2H,6-Ring)	107.80(C(8), C(9)), 123.46(C(5), C(6))	305(2467)	350(2390)
		1932 br,ss 1914	4.92(m,2H,5-Ring) 4.73(m.1H.5-Ring)	126.13(C(4), C(7)) 193.62(C()	248(6794)	270(6006)
LiC,H, ^b				91.8(C(1), C(3)), 115(C(2))		
(9)				119(C(4), C(7)), 113(C(5), C(6)) 128(C(8), C(9))		
^a Zu Vergleichsz rift hergestellt ur und 8 entspricht	wecken zwischen den id ihre Spektren aufg der IUPAC-Nomenk	in dieser Arbeit erstm enommen. Lediglich d latur.	ials beschriebenen Tc-Ve ie Daten für 8 wurden d	rbindungen 2-4 wurden die Re-Verbindur er Literatur entnommen. ⁶ Die Nummerie	ngen 2a, 3a und 4a erung bei den Inde	nach Literaturvorsch- nylverbindungen 4, 4a
יוואיולפווזא א חווח		Id.UI.				

70

Tabelle 3

aufgespalten ist (3 A_u). Nicht erklärt werden kann, warum im KBr-Spektrum von 3 und 3a keine Auspaltung der E-Bande (C_{3v}) beobachtet wird. Die gruppentheoretische Behandlung ergibt für 3 und 3a ebenfalls drei IR-aktive Banden (2 B_u, 1 A_u). Erwartungsgemäß liegen die ν (CO)-Banden der Tc-Spezies bei höheren Wellenzahlen (4–14 cm⁻¹) als die der homologen Re-Verbindungen. Betrachtet man die CO-Valenzschwingungen als Maß für die Elektronendonorfähigkeit der C₅R₅-Aromaten, so ist sowohl bei den Re- als auch bei den Tc-Spezies die Reihe C₅Me₅ > C₅M₄Et > Ind > C₅H₅ anzugeben.

Die in Benzol- d_6 aufgenommenen ¹H- und ¹³C-NMR Spektren der Spezies 2–4 sind ebenfalls in Tab. 3 zusammengestellt. 2, 2a sowie 3 und 3a ergeben Signale in den erwarteten Bereichen, wobei für die Tc-Verbindungen – wie schon bei anderen metallorganischen Carbonylverbindungen des Technetium [21,22] – keine ¹³C-NMR Signale für die Carbonylkohlenstoffatome beobachtet wurden. Im ¹H-NMR Spektrum der Indenylkomplexe 4 und 4a sind zwei getrennte Signalgruppen zu diskutieren. Die 6-Ringprotonen (A₂B₂) weisen gegenüber denen des freien Indenylions im Li[C₉H₇] (8) [23] keine großen Verschiebungen auf. Demgegenüber sind die Peaks der 5-Ringprotonen (A₂B) deutlich nach höherem Feld verschoben [24]. Dies entspricht dem Ergebnis der Röntgenstrukturanalyse, d.h. eine Bindung des Indenylsystems über das 6-Ringsystem wie im (C₉H₇)Cr(CO)₃ [25] ist auszuschließen. Auch die ¹³C-NMR Spektren von 4 und 4a belegen diese Feststellung. So sind die C-Atome des 5-Rings gegenüber 8 um ca. 20 ppm nach höherem Feld verschoben. Nur etwa halb so groß ist die paramagnetische Verschiebung der 6-Ringkohlenstoffatome.

Auch die UV-Spektren der Verbindungen 2-4 sind in Tab. 3 zusammengefaßt, sie wurden sowohl in Hexan als auch in Acetonitril aufgenommen, um eventuelle Wechselwirkungen mit dem letzteren festzustellen. Die homologen Verbindungen von Rhenium und Technetium haben ähnliche UV-Spektren, wobei die Bandenmaxima für die Tc-Spezies um 20-25 nm nach längeren Wellenlängen verschoben sind; die Absorptionskoeffizienten liegen in der gleichen Größenordnung. Die energieärmste Bande bei den Indenylverbindungen 4 und 4a ist besonders stark bathochrom verschoben. Untersuchungen [26,27] haben gezeigt, daß die niederenergetischen Banden bei den Spezies 2–4 als Charge-Transfer Banden der Art M $\rightarrow \pi^{\star}$ anzusehen sind. Die höher energetischen Banden bei 3, 3a, 4 und 4a, die mit Ausnahme bei 4a als Schulter auftreten, sollten aufgrund ihrer Lage und ihrer Extinktionskoeffizienten als $\pi - \pi^*$ -Übergänge der Liganden einzuordnen sein. Auffallend ist die Bandenverschiebung bei den Re-Verbindungen, wenn die Spektren in n-Hexan bzw. Acetonitril aufgenommen wurden. Lediglich beim $(C_5H_5)Re(CO)_3$ (1a) konnten keine Unterschiede festgestellt werden (n-Hexan, CH₃CN, λ_{max} 259 nm). Diese Unterschiede, sowohl zwischen den Re- und Tc-Verbindungen als auch die unveränderte Bandenlage bei 1a, können nicht eindeutig verstanden werden.

Experimenteller Teil

Alle Arbeiten wurden unter Inertgasatmosphäre und unter Verwendung absolutierter Argon-gesättigter Lösungsmittel durchgeführt. IR-Spektren Perkin-Elmer 283, ¹H-, ¹³C-NMR-Spektren Bruker AC 250, UV-Spektren Cary 1756, Tc-Analysen Flüssigszintillationszähler Beckman LS 6800. Die röntgenographischen Daten sind in Tab. 1, 4–7 zusammengestellt [28*].

Atom	x	у	Ζ	U _{eq} ^a
Tc(1)	4917(1)	1899(1)	2450(1)	47(1)
C(1)	7323(9)	137(9)	2674(6)	83(3)
O(1)	8705(6)	- 982(6)	2832(5)	133(3)
C(2)	6040(8)	2913(9)	1278(4)	73(3)
O(2)	6691(6)	3532(7)	561(3)	121(3)
C(3)	5742(8)	3427(8)	3338(4)	62(3)
O(3)	6150(6)	4352(6)	3871(3)	94(2)
C(4)	2781(8)	412(9)	3270(5)	65(3)
C(5)	3022(7)	- 22(8)	2208(5)	61(3)
C(6)	2261(7)	1557(7)	1566(4)	59(2)
C(7)	1581(7)	2949(7)	2242(5)	54(2)
C(8)	1892(8)	2277(9)	3278(5)	62(3)
C(9)	3167(9)	- 907(10)	4194(5)	108(4)
C(10)	3775(9)	-1873(8)	1862(6)	99(4)
C(11)	2071(9)	1662(11)	411(4)	96(4)
C(12)	518(8)	4772(8)	1879(6)	104(4)
C(13)	1245(9)	3242(11)	4225(5)	107(4)

Tabelle 4
Atomkoordinaten (×10 ⁴) und Temperaturfaktoren (×10 ³) von 2

^a $U_{eq} = 1/3$ Spur U.

Tabelle 5

Atomkoordinaten ($\times 10^4$) und Temperaturfaktoren ($\times 10^3$) von 2a

Atom	x	у	Ζ	U _{eq} ^a
Re(1)	-61(1)	1889(1)	2443(1)	43(1)
C(1)	-1969(11)	- 41(9)	2236(6)	52(2)
C(2)	-2702(11)	1476(10)	1579(6)	53(3)
C(3)	- 3443(10)	2943(10)	2195(6)	54(2)
C(4)	- 3105(11)	2176(13)	3275(6)	65(3)
C(5)	-2193(11)	369(10)	3255(6)	55(3)
C(6)	-1179(14)	- 1927(12)	1889(8)	80(4)
C(7)	-2920(14)	1619(14)	433(6)	77(4)
C(8)	-4545(12)	4785(11)	1856(9)	83(4)
C(9)	- 3720(15)	3249(17)	4226(8)	101(5)
C(10)	- 1834(15)	-911(14)	4208(7)	91(5)
C(11)	712(12)	3392(9)	3286(6)	56(3)
O(11)	1143(10)	4344(8)	3843(5)	82(3)
C(12)	2359(13)	72(10)	2697(8)	76(4)
O(12)	3752(10)	-1034(9)	2865(8)	124(4)
C(13)	1054(12)	2900(12)	1272(6)	66(3)
O(13)	1725(11)	3507(12)	527(5)	108(4)

 $a U_{eq} = 1/3$ Spur U.

Synthese der Spezies 2a, 2, 3 und 4

Die Herstellung der Spezies erfolgt auf gleichem Wege nach Literaturbeispielen [7]. Die Decacarbonyle Tc_2 (CO)₁₀ bzw. $Re_2(CO)_{10}$ wurden jeweils mit dem 2-3fachen Überschuß an frisch destillierten und Argon-gesättigten Kohlenwasserstoff unter

^{*} Die Literaturnummer mit einem Sternchen deutet eine Bemerkung in der Literaturliste an.

Atom	x	у	Z	$U_{\rm eq}^{\ a}$
Tc(1)	9886(1)	7169(1)	7088(1)	46(1)
C(1)	7511(8)	4773(7)	6775(4)	68(2)
O (1)	6137(6)	3289(6)	6591(3)	106(2)
C(2)	8610(7)	8265(7)	6046(4)	67(2)
O(2)	7844(6)	8942(7)	5421(3)	108(2)
C(3)	8629(6)	8242(6)	8223(3)	56(2)
O(3)	7958(5)	8935(5)	8930(3)	82(2)
C(4)	12385(6)	5644(6)	7467(3)	53(2)
C(5)	12483(7)	6228(8)	6382(4)	70(2)
C(6)	13162(7)	8312(8)	6539(4)	74(2)
C(7)	13357(6)	9044(6)	7665(4)	64(2)
C(8)	12920(6)	7402(6)	8267(3)	50(1)
C(9)	12954(6)	7255(7)	9407(3)	60(2)
C(10)	12536(7)	5480(7)	9707(4)	68(2)
C(11)	12036(7)	3776(7)	8923(4)	73(2)
C(12)	11921(7)	3801(7)	7833(4)	68(2)

Atomkoordinaten ($\times 10^4$) und Temperaturfaktoren ($\times 10^3$) von 3

 $\overline{U_{eq}} = 1/3$ Spur U.

Tabelle 7

Tabelle 6

Atomkoordinaten (×10⁴) und Temperaturfaktoren (×10³) von 4

Atom	x	у	Z	U _{eq} ^a	
Tc(1)	760(1)	2500	3041(1)	44(1)	
C(1)	2393(6)	1301(5)	2417(5)	60(2)	
O(1)	3297(6)	548(4)	2002(4)	94(2)	
C(2)	2058(10)	2500	4909(8)	59(2)	
O(2)	2763(9)	2500	6069(6)	100(2)	
C(3)	- 1824(8)	2500	1379(6)	44(2)	
C(4)	- 1944(5)	1478(3)	2277(4)	46(1)	
C(5)	-2124(5)	1874(3)	3706(4)	47(1)	
C(6)	-2017(7)	210(4)	1769(5)	65(2)	
C(7)	-2491(7)	1093(5)	4964(5)	71(2)	
C(8)	-1898(10)	2500	-229(7)	65(3)	
C(9)	- 3945(11)	2500	- 901(7)	85(3)	

^a $U_{eq} = 1/3$ Spur U.

Inertgas in ein Schlenkrohr gebracht und langsam auf 200°C aufgeheizt. Nach Druckausgleich ließ man das Reaktionsgemisch 16 h bei dieser Temperatur reagieren. Das Decacarbonyl löste sich nur langsam mit gelblicher Farbe im Kohlenwasserstoff auf. Nach dem Erkalten auf RT wurde das dickflüssige gelbbraune Reaktionsgut mit 2 ml Pentan aufgenommen und die Lösung auf die Temperatur eines CO₂/Methanol-Gemisches langsam abgekühlt. Dabei fielen die Produkte als weiße Pulver aus; die überstehende Pentanlösung wurde abdekantiert und der Rückstand mit kaltem Pentan (CO)₂/CH₃OH) dreimal gewaschen. Die weitere Reinigung erfolgte durch Sublimation (10 Torr, 50–70°C) oder Umkristallisation

Produkt	Einwaage Edukte mg (mmol), ml	Reinigungs- methode	Ausbeute mg (% bez. $M_2(CO)_{10}$)	Beschaffenh. Kristalle	Fp (°C, Argon)
2 a	204 (0.31) $Re_2(CO)_{10}$, 0.3, $C_5(CH_3)_5H$	Umkrist. n-Hexan	197 (77)	Luftstabile farblose Prismen	150-152
2	248 (0.52) Tc ₂ (CO) ₁₀ , 0.45, C ₅ (CH ₃) ₅ H	Umkrist. n-Hexan	247 (74)	Luftstabile farblose Prismen	119–120
3	350 (0.73) Tc ₂ (CO) ₁₀ , 0,5, C ₅ (CH ₃) ₄ C ₂ H ₅ H	Sublim. 10 Torr, 50 ° C	394 (81)	Luftstabile farblose Nadeln	55
4	188 g (0.39) Tc ₂ (CO) ₁₀ , 0.3, Inden(C ₉ H ₈)	Sublim. 10 Torr, 50 ° C	96 (41)	Luftstabile schwgelbe Plättchen, Nadeln	57-58

Daten zur Synthese der Verbindungen 2-4

aus n-Hexan. Einzelheiten zur Herstellung der Verbindungen 2-4 sind in Tab. 8 zusammengestellt.

Dank

Dem Fonds der Chemischen Industrie und der Deutschen Forschungsgemeinschaft danken wir für die Gewährung von Sach- und Personalmitteln, Herrn Prof. Dr. H.H. Eysel, Anorg. Chem. Institut der Universität Heidelberg, für hilfreiche Diskussionen bei den IR-Spektren.

Literatur und Bemerkungen

- 1 P.M. Treichel, in G. Wilkinson (Hrsg.), Comprehensive Organometallic Chemistry, Pergamon Press, Oxford, 1982, Band IV, Kap. 1, S. 123 ff.
- 2 N.M. Boag und H.D. Kaesz, in G. Wilkinson (Hrsg.), Comprehensive Organometallic Chemistry, Pergamon Press, Oxford, 1982, Band IV, Kap. 2, S. 205 ff.
- 3 Ch. Palm, E.O. Fischer und F. Baumgärtner, Naturwissenschaften, 49 (1962) 279.
- 4 E.O. Fischer und W. Fellmann, J. Organomet. Chem., 1 (1963) 191.
- 5 (a) A.F. Berndt und R.E. Marsh, Acta Crystallogr., 16 (1963) 118; (b) P.J. Fitzpatrick, Y. Lc Page, J. Sedman und I.S. Butler, Inorg. Chem., 20 (1981) 2852.
- 6 P.J. Fitzpatrick, Y. Le Page und I.S. Butler, Acta Crystallogr., B37 (1981) 1052.
- 7 M.L.H. Green und G. Wilkinson, J. Chem. Soc., (1958) 4314.
- 8 W. Sheldrick, SHELXTL-PLUS Programm, Siemens Analytical X-Ray Instruments Corp. Madison, WI, USA, 1989.
- 9 L.F. Dahl und C.H. Wei, Inorg. Chem., 2 (1963) 713.
- 10 J.M. O'Connor und Ch.P. Casey, Chem. Rev., 87 (1987) 307 und die dort zitierte Literatur.
- 11 P. Bischof, J. Am. Chem. Soc., 99 (1977) 8145.
- 12 L.R. Byers und L.F. Dahl, Inorg. Chem., 19 (1980) 277.
- 13 J. Faller, R.H. Crabtree und A. Habib, Organometallics, 4 (1985) 929.
- 14 M.B. Honan, J.L. Atwood, I. Bernal und W.A. Herrmann, J. Organomet. Chem., 179 (1979) 403.
- 15 V. Schomaker und K.N. Trueblood, Acta Crystallogr., B24 (1968) 63.

Tabelle 8

- 16 K.N. Anisimov, N.E. Kolobova und V.N. Khandozhko, Izv. Akad. Nauk. SSSR, Ser. Khim., (1974) 2843 [Bull. Acad. Sci. USSR, 23 (1974) 2742 (Engl. ed.)].
- 17 D.M.P. Mingos, M.I. Forsyth und A.J. Welsh, J. Chem. Soc., Dalton Trans., (1978) 1363.
- 18 G.H. Lee, S.M. Peng, F.C. Liu und R.S. Liu, J. Organomet. Chem., 377 (1989) 123.
- 19 M.D. Rausch, K.J. Moriarty, J.L. Atwood, W.E. Hunter und E. Samuel, J. Organomet. Chem., 327 (1987) 39.
- 20 R.D. Fischer, Chem. Ber., 93 (1960) 165; J. Weidlein, U. Müller und K. Dehnike, Schwingungsspektroskopie, Georg Thieme Verlag, Stuttgart, New York, Kap. 8, 1982.
- 21 K. Raptis, B. Kanellakopulos, B. Nuber und M.L. Ziegler, J. Organomet. Chem., 405 (1991) 323.
- 22 K. Rapits, B. Kanellakopulos, B. Nuber und M.L. Ziegler, Z. Naturforsch., 466 (1991) 15.
- 23 H.O. Kalinowski, S. Berger und S. Braun, ¹³C-NMR-Spektroskopie, Georg Thieme Verlag, Stuttgart, New York, Kap. 3, 1984; M. Hesse, H. Meier und B. Zeeh, Spektroskopische Methoden in der organischen Chemie, Georg Thieme Verlag, Stutgart, Kap. 3, 1979.
- 24 H.P. Fritz und C.G. Kreiter, J. Organomet. Chem., 4 (1965) 198.
- 25 F.H. Köhler, Chem. Ber., 107 (1974) 570.
- 26 S. Jamada, H. Yamazaki, H. Nishikawa und R. Tsuchida, Bull. Chem. Soc. Jpn., 33 (1960) 481.
- 27 M. Wrighton, Chem. Rev., 74 (1974) 401.
- 28 Weitere Einzelheiten zu den Kristallstrukturuntersuchungen können beim Fachinformationszentrum Karlsruhe, Gesellschaft für wissenschaftlich-technische Information mbH., W-7514 Eggenstein-Leopoldshafen 2, unter Angabe der Hinterlegungsnumber CSD-54903, der Autorennamen und des Zeitschriftenzitats angefordert werden.